If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+18x-5=0
a = 81; b = 18; c = -5;
Δ = b2-4ac
Δ = 182-4·81·(-5)
Δ = 1944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1944}=\sqrt{324*6}=\sqrt{324}*\sqrt{6}=18\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18\sqrt{6}}{2*81}=\frac{-18-18\sqrt{6}}{162} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18\sqrt{6}}{2*81}=\frac{-18+18\sqrt{6}}{162} $
| 3×+5y=23 | | √x^2-2x-4=28 | | 6-n-7=5² | | 7(j-10)=7(2j+7) | | 3+55x=3x+15 | | 5x-3=4(x+1) | | 7x+7=4x-10 | | 30•2/3=w | | 2(4g-14)=6(g-15) | | 1/3a=30 | | 1/3s=30 | | -11n-n-5n-(-n)=16 | | 10s-(-7s)-18s+(-6s)-2s=18 | | 3(4c-15)=3(5c+7) | | 10s-(-7s)-18+(-6)-2=18 | | 2-c=10+3c | | 4v/3=12 | | 5s-3s+6s=16 | | 5x-2x-2x=9 | | 2v-2v+3v-2v=15 | | v+2=7 | | 6=t+3 | | (8-5x)=0 | | 9k-3k+2k+2k=10 | | 10m-6m+m+3m-3m=15 | | 6y-6y+6y=12 | | 18g-17g=7 | | 15g-13g=20 | | 2(7w-10)=6(3w+10) | | 11j-7j=20 | | 12x2+25x+12=0 | | 68/12=51/p |